Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 38(5): 1258-1270, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31761502

RESUMO

Globally, human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory infection in infants and young children. There are no licensed vaccines despite the high worldwide disease burden. RSV fusion (F) glycoprotein vaccine is the most advanced candidate for maternal immunization. In this report, a baboon maternal immunization model was used to assess the immunogenicity and protection of infants against pulmonary challenge with human RSV/A. Vaccination in the third trimester produced high anti-RSV F IgG titers and virus-neutralizing antibodies. Infants born to immunized females had high levels of serum RSV antibodies that were comparable to maternal levels at birth and persisted for over 50 days with a half-life of 14-24 days. Furthermore, infants from immunized females and challenged with RSV/A were healthy, developed less severe disease, and had only mild pulmonary inflammatory changes whereas infants born to non-vaccinated females developed more severe disease with marked to moderate interstitial pneumonia, pulmonary edema, and bronchiolar obstruction. These results support the further development of the RSV F vaccine for maternal immunization.


Assuntos
Glicoproteínas/imunologia , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Feminino , Glicoproteínas/administração & dosagem , Mães , Papio , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/imunologia , Vacinação , Proteínas Virais de Fusão/administração & dosagem
2.
PLoS Pathog ; 15(1): e1007507, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657788

RESUMO

Zika virus (ZIKV) infection during pregnancy in humans is associated with an increased incidence of congenital anomalies including microcephaly as well as fetal death and miscarriage and collectively has been referred to as Congenital Zika Syndrome (CZS). Animal models for ZIKV infection in pregnancy have been developed including mice and non-human primates (NHPs). In macaques, fetal CZS outcomes from maternal ZIKV infection range from none to significant. In the present study we develop the olive baboon (Papio anubis), as a model for vertical transfer of ZIKV during pregnancy. Four mid-gestation, timed-pregnant baboons were inoculated with the French Polynesian ZIKV isolate (104 ffu). This study specifically focused on the acute phase of vertical transfer. Dams were terminated at 7 days post infection (dpi; n = 1), 14 dpi (n = 2) and 21 dpi (n = 1). All dams exhibited mild to moderate rash and conjunctivitis. Viremia peaked at 5-7 dpi with only one of three dams remaining mildly viremic at 14 dpi. An anti-ZIKV IgM response was observed by 14 dpi in all three dams studied to this stage, and two dams developed a neutralizing IgG response by either 14 dpi or 21 dpi, the latter included transfer of the IgG to the fetus (cord blood). A systemic inflammatory response (increased IL2, IL6, IL7, IL15, IL16) was observed in three of four dams. Vertical transfer of ZIKV to the placenta was observed in three pregnancies (n = 2 at 14 dpi and n = 1 at 21 dpi) and ZIKV was detected in fetal tissues in two pregnancies: one associated with fetal death at ~14 dpi, and the other in a viable fetus at 21 dpi. ZIKV RNA was detected in the fetal cerebral cortex and other tissues of both of these fetuses. In the fetus studied at 21 dpi with vertical transfer of virus to the CNS, the frontal cerebral cortex exhibited notable defects in radial glia, radial glial fibers, disorganized migration of immature neurons to the cortical layers, and signs of pathology in immature oligodendrocytes. In addition, indices of pronounced neuroinflammation were observed including astrogliosis, increased microglia and IL6 expression. Of interest, in one fetus examined at 14 dpi without detection of ZIKV RNA in brain and other fetal tissues, increased neuroinflammation (IL6 and microglia) was observed in the cortex. Although the placenta of the 14 dpi dam with fetal death showed considerable pathology, only minor pathology was noted in the other three placentas. ZIKV was detected immunohistochemically in two placentas (14 dpi) and one placenta at 21 dpi but not at 7 dpi. This is the first study to examine the early events of vertical transfer of ZIKV in a NHP infected at mid-gestation. The baboon thus represents an additional NHP as a model for ZIKV induced brain pathologies to contrast and compare to humans as well as other NHPs.


Assuntos
Córtex Cerebral/patologia , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Encéfalo/patologia , Córtex Cerebral/lesões , Córtex Cerebral/virologia , Modelos Animais de Doenças , Feminino , Morte Fetal , Doenças Fetais/patologia , Feto/virologia , Transmissão Vertical de Doenças Infecciosas , Microcefalia , Papio anubis/microbiologia , Papio anubis/virologia , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , Viremia , Zika virus/genética , Infecção por Zika virus/virologia
3.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29875247

RESUMO

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus with devastating outcomes seen recently in the Americas due to the association of maternal ZIKV infection with fetal microcephaly and other fetal malformations not previously associated with flavivirus infections. Here, we have developed the olive baboon (Papio anubis) as a nonhuman primate (NHP) translational model for the study of ZIKV pathogenesis and associated disease outcomes to contrast and compare with humans and other major NHPs, such as macaques. Following subcutaneous inoculation of adult male and nonpregnant female baboons, viremia was detected at 3 and 4 days postinfection (dpi) with the concordant presentation of a visible rash and conjunctivitis, similar to human ZIKV infection. Furthermore, virus was detected in the mucosa and cerebrospinal fluid. A robust ZIKV-specific IgM and IgG antibody response was also observed in all the animals. These data show striking similarity between humans and the olive baboon following infection with ZIKV, suggesting our model is a suitable translational NHP model to study ZIKV pathogenesis and potential therapeutics.IMPORTANCE ZIKV was first identified in 1947 in a sentinel rhesus monkey in Uganda and subsequently spread to Southeast Asia. Until 2007, only a small number of cases were reported, and ZIKV infection was relatively minor until the South Pacific and Brazilian outbreaks, where more severe outcomes were reported. Here, we present the baboon as a nonhuman primate model for contrast and comparison with other published animal models of ZIKV, such as the mouse and macaque species. Baboons breed year round and are not currently a primary nonhuman primate species used in biomedical research, making them more readily available for studies other than human immunodeficiency virus studies, which many macaque species are designated for. This, taken together with the similarities baboons have with humans, such as immunology, reproduction, genetics, and size, makes the baboon an attractive NHP model for ZIKV studies in comparison to other nonhuman primates.


Assuntos
Anticorpos Antivirais/metabolismo , Modelos Animais de Doenças , Viremia/diagnóstico , Infecção por Zika virus/diagnóstico , Zika virus/patogenicidade , Animais , Brasil , Feminino , Humanos , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Masculino , Mucosa/virologia , Papio , Viremia/líquido cefalorraquidiano , Zika virus/imunologia , Infecção por Zika virus/líquido cefalorraquidiano , Infecção por Zika virus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...